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ABSTRACT
In this paper we present a learning based method for vessel

segmentation in angiographic videos. Vessel Segmentation

is an important task in medical imaging and has been inves-

tigated extensively in the past. Traditional approaches often

require pre-processing steps, standard conditions or manually

set seed points. Our method is automatic, fast and robust

towards noise often seen in low radiation X-ray images. Fur-

thermore, it can be easily trained and used for any kind of

tubular structure. We formulate the segmentation task as a

hierarchical learning problem over 3 levels: border points,

cross-segments and vessel pieces, corresponding to the ves-

sel’s position, width and length. Following the Marginal

Space Learning paradigm the detection on each level is per-

formed by a learned classifier. We use Probabilistic Boosting

Trees with Haar and steerable features. First results of seg-

menting the vessel which surrounds a guide wire in 200

frames are presented and future additions are discussed.

Index Terms— Blood vessels, Image segmentation, X-

ray angiocardiography, learning systems

1. INTRODUCTION

Vessel Segmentation is an important task in medical imag-

ing and has been investigated extensively in the past. In this

paper, we develop an automatic segmentation method for ves-

sels in coronary angiography.

Coronary angiography is a medical examination that uses

X-Ray imaging to find stenoses in coronary arteries. To lo-

cate such an abnormal narrowing of a vessel a catheter is put

into an artery in the groin or arm and guided to the heart. A

contrast agent is injected several times to visualize the ves-

sel and aid navigation of the catheter, guidewire, balloon and

stent in the coronary tree. Segmentation is performed during

the short period in which the vessel is visible in order to use

this information later in the procedure and for future analysis.

There is a plethora of different segmentation methods for

vessels. Some are specific to different kinds of vessels, such

as retina vessels or different modalities such as CT or MRI.

Only few papers handle the case of angiographic videos. [1]
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Fig. 1. Examples of main vessel segmentation in angio-

graphic images.

provides an extensive overview of different methods putting

them in categories such as (i) pattern recognition, (ii) model

based, (iii) tracking based and (iv) artificial intelligence.

Few papers exist that use machine learning techniques.

[2] uses wavelet features and k-Nearest Neighbor to label pix-

els as inside or outside of a vessel. A similar approach that

also uses k-Nearest Neighbor ([3]) is one of the few papers

to present quantitative results. However, its results are im-

practical for our purpose, since the method needs about 15

minutes to segment one image of a retina vessel and is not ro-

bust against edges that are not vessels. In angiography, such

edges frequently occur in form of background organs.

Many methods rely on standard conditions, heavy pre-

processing steps such as morphological top hat filters or on

manually set seed points. In contrast to these methods, our

approach is purely learning based and may be used for seg-

menting other kinds of tubular structures such as streets. We

do not require seed points, nor pre-processing of frames. Our

algorithm is real-time and returns a probability as well as a

width for each section of the vessel. We show first results on

200 frames.

The background section describes marginal space learn-

ing which shapes our learning process, probabilistic boosting

trees, which are used in all levels of learning and lastly steer-
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able features. After defining the representation of the vessel

we describe the training of our model. A section of experi-

ments follows and a conclusion is given.

2. BACKGROUND

2.1. Marginal Space Learning

Many object detection applications face the problem of a

high dimensional parameter space. Marginal Space Learning

(MSL) first introduced by ([4]) uses the fact that the posterior

distribution of the correct parameters given the data lies in a

small region of the n-dimensional complete parameter space:

Rn ⊂ Ωn.

Let P (Ωn|D) be the true posterior given the data D. In-

stead of searching for Rn directly in Ωn, MSL proposes to

start in one of its low dimensional marginal spaces Ω1 and

sequentially increase the dimensionality of the search space:

Ω1 ⊂ Ω2 . . . ⊂ Ωn (1)

where dim(Ωk) − dim(Ωk−1) is usually small. Assume we

learned the probability distribution over space Ωk which re-

sults in the subspace Πk with the most probable values. This

allows us to restrict the learning and testing of the next higher

dimensional marginal space to Πk ×Xk+1. Hence, orders of

magnitude fewer parameters have to be examined by restrict-

ing the final Rn early during the learning process. This is

different from a normal cascade of strong classifiers in that it

performs simple operations on a subset of Ωk.

2.2. Probabilistic Boosting Tree

The Probabilistic Boosting Tree (PBT) introduced by ([5]) is

used as a classifier in each marginal space. A PBT is similar

to a decision tree but instead of using just one attribute at

each node, a strong AdaBoost classifier is trained to find the

probability of classes y = {+1,−1} using several weighted

weak classifiers h(t): H(x) =
∑T

t=1 αtht(x).
Based on H(x) and the resulting probabilities q(+1|x),

q(−1|x), each node recursively subdivides the samples into
a left (Sleft) and a right set (Sright). Assume, we have a
sample (xi, yi):

if q(+1|xi)− 1/2 > ε (2)

then (xi, yi, 1) → Sright

elseif q(−1|xi)− 1/2 > ε

then (xi, yi, 1) → Sleft

else

(xi, yi, q(+1|xi))→ Sright and (xi, yi, q(−1|xi))→ Sleft

It then trains another strong classifier in both sets unless

the empirical distribution q(y) =
∑

i wiδi(yi = y) di-

rectly defines the class or the maximum depth is reached.

During testing, the complete posterior p̃(y|x)is recursively

Fig. 2. Left: Example of a vessel represented as a list of

quadrilaterals Q each consisting of two cross segments C.

Each cross-segment consists of two endpoints p. Cross seg-

ments are connected through the boundaries B of the quadri-

lateral. Right: Example of a quadrilateral between two cross

segments and the relative coordinate system used for sam-

pling of steerable features at the white circles.

calculated from the entire tree by adding the probabilities

p̃left|right(y|x) of its subtrees, weighted by the current clas-

sifier‘s posterior :

p̃(y|x) = q(+1|xi)p̃right(y|x) + q(−1|xi)p̃left(y|x) (3)

2.3. Steerable Features

Steerable features is the name of a novel framework ([6])

which has been developed for 3d object segmentation with

a given mean shape. It can capture the orientation, rotation

and scale of an object while retaining a high degree of effi-

ciency. The idea is to set up a small relative coordinate sys-

tem for each given object with the center of the object being

the origin. Then, few points are sampled from the area (or

volume) around the origin by a certain pattern. Possible sam-

ples could be gray values, gradient values, probability maps

that have been calculated before, a combination or transfor-

mation of those or even combined values of different sample

points. Given those sampled features, a posterior probability

can be computed for the parameters of a given object. Figure

2 shows an example coordinate system inside a vessel. For

more details, see section 4.

3. VESSEL REPRESENTATION IN MSL

In order to apply MSL effectively, we chose the following

representation for a vessel. A vessel V is defined to be an or-

dered list of n quadrilaterals (each associated with a probabil-

ity): V = (Q1, . . . , Qn). Each quadrilateral Qi consists of a

pair of cross segments C: Qi = (Ci,1, Ci,2). Each cross seg-

ment C consists of its two endpoints (i.e. pixels in the image

domain I): Ci,j = (pi,j,1, pi,j,2). Neighboring quadrilaterals

share the same cross segments, i.e.: Ci,2 = Ci+1,1 ∀i :
1 < i < n. Vessel boundaries Bi,1 and Bi,2 are locally de-

fined for each quadrilateral to be either a line with endpoints
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Fig. 3. Examples of positive (green) and negative(red) train-

ing samples for Ω1 - edge detection (top left), Ω2 - cross seg-

ments (top right) and Ω3 - quadrilaterals (bottom)

pi,1,1, pi,2,1 or a smooth polynomial function whose deriva-

tives are defined by the gradient at these endpoints. For the

sake of simplicity, we will consider only the case of lines here.

Figure 1 shows an example of such a vessel.

In this representation each level i (i.e. points, segments,

quadrilaterals) corresponds to a learned classifier in space Ωi

in the segmentation algorithm.

4. TRAINING MSL-CLASSIFIERS

In this section, we describe the method to segment a vessel

into the representation given by section 3.

4.1. Ω1 - Learning Enhanced Edge Detection

The first level finds possible vessel edges by a simple gradi-

ent based method that is enhanced by a trained PBT classifier.

For the classifier a sample is a pixel p(x, y) with a direction

(gy,−gx), i.e. the gradient direction rotated counterclock-

wise by 90 degrees. This way, the corresponding Haar Fea-

tures ([7]) of each sample are aligned and have a darker area

(the vessel with contrast) on their right side. Through Haar

Features more complex characteristics of vessel edges such as

small side vessels may also be incorporated into the learning

process. Samples are positive, if they have close proximity

to the annotated vessel border and a large gradient. Figure 3

shows examples of training samples for all three levels.

During detection, the result is a mask M of the image with

probabilities entries:

Mx,y = PPBT(I(x,y) = edge|Haarx,y) (4)

4.2. Ω2 - Cross Segments

Cross segments are defined in a similar way in ([8]), as a line

that is perpendicular to the medial axis of the vessel, i.e. bi-

secting it. Based on M , the second level determines the width

of the vessel by finding a suitable edge pixel in the opposite

gradient direction for each candidate location a where Ma is

high. A cross-segment sample is created if:

∃b[||a− b|| < Wmax ∧ ∃t[g̃(t) = b]] (5)

where g̃ is the vector function in affine space, which starts at

a and points in the opposite direction of the gradient. Wmax

is the maximum width a vessel could have.

For a cross segment to be a positive sample for the training

of the PBT classifier, both of its endpoints have to be close to

the annotated vessel edge and the induced line through them

has to be close to perpendicular to the medial axis of the ves-

sel. All other segments are negative samples.

During detection, the result is a set of cross segments that

bisect the vessel and their probabilities:{(C,PΩ2(C))}1..MaxC,

with maxC being the maximum number of cross segments per

frame.

4.3. Ω3 - Quadrilaterals

The goal of this level is to find pairs of cross segments that, if

connected as a quadrilateral, capture an area of the vessel. It

is important that the connecting lines are as close as possible

to the real edge. See figure 2 for an example with annotation.

In order to give a probability for a quadrilateral, steerable

features are sampled around its center, as seen in figure 2.

Possible features include: image data such as gradient, gray

value; or results of previous levels, such as the probability

map of Ω1 or the probabilities of the two cross segments from

Ω2, which form the quadrilateral. The PBT classifier will pick

the best features.

Positive and negative samples are created as follows: A

sample pool is created by finding the closest 20 cross seg-

ments on the right and left side for all the segments of the

previously learned level. The remaining quadrilaterals are

sorted into positive and negative samples for PBT training:

A quadrilateral Qi is a positive sample, if ∀p ∈ Bi,1

⋃
Bi,2

∃d ∈ {a(x,y)|a(x,y) ∈ annotated boundary} : ||p−d||2 < 2
(6)

The probability of a quadrilateral shows how likely two cross

segments are connected for the final vessel.

4.4. Fourth Level: Dynamic Programming

Based on the outcomes of previous steps, we create a graph

G = (V,E), where the vertices are cross-segments. Cross-

segments are connected through an edge, if they are likely

to form a quadrilateral. The cost associated with each edge

is calculated based on the quadrilateral’s probability: c =
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log(1−p
p ). Finding the main vessel then corresponds to find-

ing the lowest cost path inside this graph. We use dynamic

programming for solving this task.

5. EXPERIMENTS

Instead of segmenting the entire vessel tree, the goal of the

following experiments is to segment only the vessel which

surrounds the guide wire. This is useful during coronary an-

giography, when the surgeon has already identified the vessel

which is blocked and needs to memorize its appearance, while

the contrast agent is flowing through.

Training was performed with 134 frames from 7 se-

quences and testing with 64 frames from 5 different se-

quences. For evaluation purposes we compare the area under

the quadrilaterals with that of the annotation, both counted

in pixels. The detection rate in the test set is 90.1% and the

false alarm rate is 23.5%. The high false alarm rate and the

relatively low detection rate are both caused by dominant

side vessels as shown in figure 4. Since the dynamic pro-

gramming selects the path with the lowest cost, it follows the

longer side vessels and hence misses the vessel that surrounds

the guide wire. This problem will be solved in future versions

by incorporating time coherency with guide wire detection

of previous frames. The running time is around 2 seconds

Fig. 4. Left: Correct segmentation of a vessel that surrounds

the guide wire. Right: Instead of segmenting the vessel which

surrounds the guide wire a dominant side vessel is segmented.

The result is a large false alarm.

per frame. Figure 1 shows final results from two different

sequences. Figure 5 demonstrates that our method general-

izes well, since we have not used fluoroscopic images of such

low quality during training, but the vessel is still correctly

segmented.

6. CONCLUSION

In this paper, we presented a hierarchical learning based ves-
sel segmentation method that is highly driven by data and gen-
eralizes well to lower quality X-ray images. We introduced a
new representation of a vessel consisting of three marginal

Fig. 5. Results in low-radiation X-ray images (test set). Left:

Original image, Right: Segmentation of main vessel.

spaces: border points, vessel width and vessel pieces (quadri-
laterals), each having an associated classifier. Our experimen-
tal results are preliminary but promising: they demonstrate
that the vessel model is capable of segmenting vessels with
high precision, even in low quality images. Further additions
such as time coherency are needed to ensure that only the
main vessel is segmented. Another extension would be to
incorporate a bifurcation detector and use it to segment all
branches of a vessel tree which start at a bifurcation and end
at a tip.
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